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Motivation
The traditional ML pipeline has a new bottleneck.
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Snorkel, a system for creating training data, has
improved on distant supervision/heuristic baselines and
performed comparably to hand-labeled datasets. This
project aims to extend Snorkel’s label generating
abilities to include cross-sentence relation extraction.

Candidate Extraction

Ex: Extracting all person-car-color relations across
three sentences or less 1n a document:

Sentence 1 | Sentence 2 | Sentence 3
Entity 1 Han Joe, Ben Carl
Entity 2 Audi Ford, Fiat
Entity 3 Blue Purple Gray

In order to find all 3-ary relations that include entity
mentions from the first sentence we do the following:

C; = (Han) x (Audi, Ford, Fiat) x (Blue, Purple, Gray)
C, = (Joe, Ben, Carl) x (Audi) x (Blue, Purple, Gray)
C; = (Joe, Ben, Carl) x (Ford, Fiat) x (Blue)

The candidates for the first sentence are then U;_, C;.

Continue by iterating over the remaining sentences and
updating the queue by discarding the first sentence and

adding the next.
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[| we study a patient who became
quadriplegic after parenteral magnesium
administration for preeclampsia.
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Extracting Spouse Relations

Below are performance metrics for various Snorkel configurations tested on a
spouse dataset. We found this dataset to be undesirable as 1t does not come with
cross-sentence labels and positive cross-sentence samples are extremely rare.
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Extracting Chemical — Disease Relations

Below are performance metrics for various Snorkel configurations tested on a
chemical-disease dataset. As with the other example, all models used labeling
functions for single sentences, which do not generalize to multiple sentences.
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Conclusion

Although the preliminary models do not always
perform at the same level as the single sentence
(original) version of Snorkel, the potential {for
performance improvement and usefulness 1s evident.
Cross-sentence relation extraction enables more
complexity when writing labeling functions and
deciding on a discriminative model, which could, 1n
turn, permit better performance. In addition, grid
search for hyperparameter optimization and an increase
in the number of training epochs would benefit the
models and result 1n a superior comparison.
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More Information

snorkel.stanford.edu (Source code and tutorials)
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